

Blue lines indicate the area meeting the ISRA Criteria; dashed lines indicate the suggested buffer for use in the development of appropriate place-based conservation measures

BERMEO ISRA

European Atlantic Region

SUMMARY

Bermeo is located offshore of Vizcaya and Guipúzcoa provinces, Basque Country, Spain. This area encompasses part of the continental shelf and the slope towards the Capbreton canyon system. The habitat is characterised by rocky, sandy-muddy, and sandy substrates with pockmarks. The area is influenced by a marked seasonal stratification and mixing, with moderate wind-driven upwelling, eddies, and freshwater input from local rivers, contributing to nutrient enrichment and enhanced primary productivity. The area overlaps with the Cantabrian Sea (Southern Bay of Biscay) Ecologically or Biologically Significant Marine Area. Within this area there are: **reproductive areas** (Blue Shark *Prionace glauca*).

SPAIN

0-1,800 metres

708.1 km²

CRITERIA

Sub-criterion C1 - Reproductive Areas

DESCRIPTION OF HABITAT

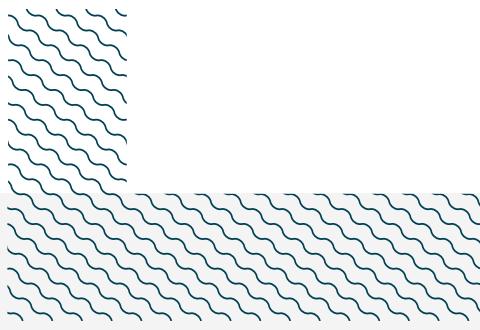
Bermeo is located offshore of Vizcaya and Guipúzcoa provinces, Basque Country, Spain. This area encompasses part of the continental shelf and part of the slope towards the Capbreton canyon system. Bermeo is characterised by shallower areas on the continental shelf which are predominantly rocky and occasionally covered by sandy-muddy and sandy substrates, to the slope in which muddy-sandy or muddy sedimentation predominates with the presence of contourite channels with pockmarks (cone-shaped, circular, or elliptical depressions) (Jané et al. 2010; Galparsoro et al. 2020).

The area is influenced by a marked seasonal stratification and mixing, typical of temperate seas. During the boreal winter, the water column is fully mixed, whereas in spring and summer, surface warming leads to strong thermal stratification (Mason et al. 2006). The region also experiences moderate wind-driven upwelling and freshwater input from local rivers, contributing to nutrient enrichment and enhanced primary productivity (ICES 2022). In addition, the area is influenced by dynamic mesoscale features, including shelf-break fronts and eddies (Fernández et al. 2004; Borja et al. 2019). Submarine canyons along the continental slope off the Basque coast carry organic material downward, linking surface and deepwater ecosystems, and boosting local productivity and habitat diversity (van den Beld et al. 2017). Within the area, the anchovy *Engraulis encrasicolus* spawns seasonally from March to August, a process triggered by the warming of surface waters and the onset of water column stratification (Motos et al. 1996).

The area overlaps with the Cantabrian Sea (Southern Bay of Biscay) Ecologically or Biologically Significant Marine Area (EBSA; CBD 2025).

This Important Shark and Ray Area is pelagic and is delineated from inshore and surface waters (0 m) to 1,800 m based on the bathymetry of the area and the depth range of the Qualifying Species.

ISRA CRITERIA


SUB-CRITERION C1 – REPRODUCTIVE AREAS

Bermeo is an important reproductive area for one shark species.

Between 2003-2018, information was gathered from fisheries data from longline and purse seine observer programs in the Bay of Biscay (Druon et al. 2022). High capture rates of small-sized Blue Sharks (30-125 cm fork length [FL]) during July–December were reported from this area and surrounding waters. Size-at-birth for the species in the region is 39-41 cm FL (Skomal & Natanson 2003), with an estimated size of 95-100 cm FL for young-of-year (YOY) (Carlson et al. 2023), indicating that some of these individuals were neonates and YOY. Additionally, between 2020–2024, recreational snorkelling with Blue Sharks was conducted annually in the area and surrounding waters from June–October, averaging 15 trips per month. Chumming was used to attract the sharks to the surface. Between 2020–2024, Blue Sharks were observed during 194 shark snorkelling trips. From 2021–2024, a total of 17 individuals exhibited fresh mating scars, nine of which were confirmed to be females (C Barría et al. unpubl. data 2025). These individuals were sighted between July–October (C Barría et al. unpubl. data 2025). In 2023, one mating attempt was recorded in the area (L Vossgaetter pers. comm. 2025). Although Blue Sharks are widely distributed throughout the region, the regular and predictable presence of neonates, YOY, and mating behaviour highlights the importance of Bermeo as a reproductive area.

Acknowledgments

Claudio Barría (Catsharks; Universidad de Oviedo - The Shark Ray Map Project), Isaías Cruz (Mako Pako - Basque Shark Diving), Ana I Colmenero (Catsharks; Institut de Ciències del Mar - CSIC), Yaisel J Borrell (Universidad de Oviedo - The Shark Ray Map Project), Pol Carrasco-Puig (Catsharks; Fundación Oceanogràfic; Universitat de València), Laura Miralles López (Marine Animal Rescue; Universidad de Oviedo - The Shark Ray Map Project), David Ruiz-Garcia (Catsharks; Universitat de València), and Marta D Palacios (IUCN SSC Shark Specialist Group – ISRA Project) contributed and consolidated information included in this factsheet. We thank all participants of the 2025 ISRA Region O2 – European Atlantic workshop for their contributions to this process.

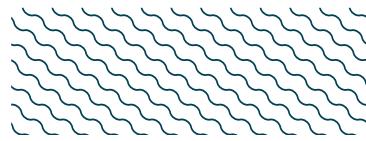
This factsheet has undergone review by the ISRA Independent Review Panel prior to its publication.

This project was funded by the Shark Conservation Fund, a philanthropic collaborative pooling expertise and resources to meet the threats facing the world's sharks and rays. The Shark Conservation Fund is a project of Rockefeller Philanthropy Advisors.

Suggested citation

IUCN SSC Shark Specialist Group. 2025. Bermeo ISRA Factsheet. Dubai: IUCN SSC Shark Specialist Group.

QUALIFYING SPECIES


Scientific Name	Common Name	IUCN Red List Category	Global Depth Range (m)	ISRA Criteria/Sub-criteria Met							
				A	B	C1	C2	C3	C4	C5	D1
SHARKS											
<i>Prionace glauca</i>	Blue Shark	NT	0-1,792			X					

SUPPORTING SPECIES

Scientific Name	Common Name	IUCN Red List Category
SHARKS		
<i>Alopias vulpinus</i>	Common Thresher	VU
<i>Centrophorus granulosus</i>	Gulper Shark	EN
<i>Centrophorus squamosus</i>	Leafscale Gulper Shark	EN
<i>Centroscymnus coelolepis</i>	Portuguese Dogfish	NT
<i>Centroscymnus crepidater</i>	Longnose Velvet Dogfish	NT
<i>Cetorhinus maximus</i>	Basking Shark	EN
<i>Deania calceus</i>	Birdbeak Dogfish	NT
<i>Etmopterus princeps</i>	Great Lanternshark	LC
<i>Etmopterus pusillus</i>	Smooth Lanternshark	LC
<i>Isurus oxyrinchus</i>	Shortfin Mako	EN
<i>Lamna nasus</i>	Porbeagle	VU
<i>Scyliorhinus canicula</i>	Smallspotted Catshark	LC
<i>Scymnodon ringens</i>	Knifetooth Dogfish	VU
<i>Sphyraena zygaena</i>	Smooth Hammerhead	VU
RAYS		
<i>Leucoraja naevus</i>	Cuckoo Skate	NT
<i>Pteroplatytrygon violacea</i>	Pelagic Stingray	LC
<i>Raja clavata</i>	Thornback Skate	NT
<i>Raja montagui</i>	Spotted Skate	LC
<i>Raja undulata</i>	Undulate Skate	NT
CHIMAERAS		
<i>Hydrolagus affinis</i>	Small-eyed Rabbitfish	LC
<i>Hydrolagus pallidus</i>	Pale Chimaera	LC

IUCN Red List of Threatened Species Categories are available by searching species names at www.iucnredlist.org. Abbreviations refer to: CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern; DD, Data Deficient.

SUPPORTING INFORMATION

There are additional indications that Bermeo is a potential reproductive area for one shark and one ray species and a potential feeding area for one shark species.

Between 2017-2024, news reports and social media posts were collected about Porbeagle in the area and surrounding waters (which recorded 22 sharks) (Diario Vasco 2017; El Correo 2018; Verballenas 2019; C Barría et al. unpubl. data 2025). Additionally, between 2020-2024, a citizen science project was carried out in the area collaborating with sport fishers around Bermeo (which recorded 11 sharks). Fishers voluntarily reported their catches, accompanied by photos, location, size, and maturity stage (described based on size and presence of open umbilical scars) (C Barría et al. unpubl. data 2025). Between 2020-2024, a total of 11 Porbeagle neonate and YOY (two individuals from social media and nine from fisher's reports) were captured in the area and surrounding waters ranging in size from 50-130 cm TL, all showing umbilical scars (C Barría et al. unpubl. data 2025). Size-at-birth for the species is 60-80 cm TL (Ebert et al. 2021), with an estimated growth during the first year of 25 cm/year (Natanson et al. 2002). Captures occurred between November-April in 2020 (n = 1), 2021 (n = 1), 2023 (n = 7), and 2024 (n = 2) (C Barría et al. unpubl. data 2025). This represents one of the only areas where Porbeagles at early life stages are regularly and predictably observed in this region. Porbeagles generally segregate by temperature and latitude, with neonates and YOY being observed in warmer waters than adults and juveniles (Semba et al. 2013). Further information is required to determine the importance of the area for the reproduction of the species.

Between 2023-2024, three late-stage pregnant female Pelagic Stingrays, inferred from observations of distended abdomens were observed in the area during previously mentioned recreational snorkelling trips. Pregnant females were observed in August of 2023 and 2024 (I Cruz pers. obs. 2024). Further information is required to determine the importance of the area for the reproduction of the species.

Between 2020-2024, recreational snorkelling with Blue Sharks was conducted annually in the area and surrounding waters from June-October, averaging 15 trips per month, with a total of 194 trips with Blue Shark sightings. Chumming was used to attract the sharks to the surface, but sharks were never fed. Blue Sharks have been observed actively feeding on schools of fish in this area each year (with at least one documented event per year) (I Cruz pers. obs. 2025). Aggregations of the species were regularly observed in this area from June-September (C Barría et al. unpubl. data 2025; Observadores del Mar unpubl. data 2025). During this period Blue Shark aggregations with >3 individuals (68% of the observations, n = 132) and up to 15 individuals (mean = 4 individuals) were observed in 2020 (n = 32 aggregations), 2021 (n = 34), 2022 (n = 29), 2023 (n = 20), and 2024 (n = 17) (C Barría et al. unpubl. data 2025). Additionally, between 2021-2024, during July-September, two aggregations of >4 individuals actively feeding on anchovy schools were recorded (I Cruz unpubl. data 2025). The size of Blue Sharks within these aggregations was visually estimated as juveniles (<130 cm FL) and sub-adults (<179 cm FL) (I Cruz unpubl. data 2025). These observations have been corroborated through informal interviews with local fishers, who also report consistent annual sightings of Blue Sharks feeding on pelagic fish aggregations during summer and early autumn (I Cruz pers. obs. 2025). Feeding events on small pelagic fish from the family Clupeidae occurs seasonally from July-September (I Cruz unpubl. data 2025). The area experiences stable and predictable environmental conditions (Motos et al. 1996), creating suitable habitat for aggregations of Blue Shark prey (such as anchovies) from March-October (Borja et al. 2019). Furthermore, this area and surrounding waters have been identified as highly suitable foraging habitat for neonates, YOY, and small juveniles (30-125 cm FL), based on surface water temperature, mixed layer depth (up to 100 m), sea surface height, and Blue Shark capture data collected between 2003-2018 (Druon et al.

2022). Further information is required to determine the importance of the area for the feeding of the species.

REFERENCES

Borja A, Amouroux D, Anschutz P, Gómez-Gesteira M, Uyarra MC, Valdés L. 2019. The Bay of Biscay. In: Sheppard C, ed. *World seas: An environmental evaluation. Volume I: Europe, the Americas and West Africa*. London: Academic Press (Elsevier), 113-152. <https://doi.org/10.1016/B978-0-12-805068-2.00006-1>

Carlson J, Passerotti M, McCandless C. 2023. Age, growth and maturity of blue shark (*Prionace glauca*) in the northwest Atlantic Ocean. *Collective Volume of Scientific Papers of the ICCAT* 80(4): 269-283.

Convention on Biological Diversity (CBD). 2025. Cantabrian Sea (Southern Bay of Biscay). Ecologically or Biologically Significant Areas (EBSAs). Available at: <https://chm.cbd.int/en/database/record?documentID=263479> Accessed June 2025.

Diario Vasco. 2017. Desembarcan un marrajo en el puerto de Ondarroa. Available at: <https://www.diariovasco.com/bajo-deba/desembarcan-marrajo-puerto-20170928002935-ntvo.html> Accessed May 2025.

Druon J-N, Campana S, Vandeperre F, Hazin FHV, Bowlby H, Coelho R, Queiroz N, Serena F, Abascal F, Damalas D, et al. 2022. Global-scale environmental niche and habitat of Blue Shark (*Prionace glauca*) by size and sex: A pivotal step to improving stock management. *Frontiers in Marine Science* 9: 828412. <https://doi.org/10.3389/fmars.2022.828412>

Ebert DA, Dando M, Fowler S. 2021. *Sharks of the world: A complete guide*. Princeton: Princeton University Press.

El Correo. 2018. Eguzki denuncia la pesca ilegal de tiburones protegidos en Ondarroa. Available at: <https://www.elcorreo.com/bizkaia/costa/eguzki-denuncia-pesca-20180426213328-nt.html> Accessed May 2025.

Fernández E, Álvarez F, Anadón R, Barquero S, Bode A, García A, García-Soto C, Gil J, González N, Iriarte A, et al. 2004. The spatial distribution of plankton communities in a Slope Water anticyclonic Oceanic eDDY (SWODDY) in the southern Bay of Biscay. *Journal of the Marine Biological Association of the United Kingdom* 84: 501-517. <https://doi.org/10.1017/S0025315404009518h>

Galparsoro I, Muxika I, Garmendia JM, Rodríguez JG. 2020. Continental shelf, canyons and pockmark fields in the southeastern Bay of Biscay. In: Harris PT, Baker E, eds. *Seafloor geomorphology as benthic habitat*. Elsevier, 769-781. <http://dx.doi.org/10.1016/B978-0-12-814960-7.00046-4>

ICES. 2022. Bay of Biscay and the Iberian Coast ecoregion – Ecosystem overview. ICES Advice: Ecosystem overviews. Copenhagen, Denmark: ICES. Available at: <https://doi.org/10.17895/ices.advice.21731579.v1> Accessed May 2025.

Jané G, Maestro A, Ercilla G, López-Martínez J, De Andrés JR, Casas D, González-Aller D, Catalán-Morollón, M. 2010. Occurrence of pockmarks on the Ortegal Spur continental margin, Northwestern Iberian Peninsula. *Marine and Petroleum Geology* 27: 1551-1564. <https://doi.org/10.1016/j.marpetgeo.2010.04.001>

Mason E, Coombs S, Oliveira P. 2006. An overview of the literature concerning the oceanography of the eastern North Atlantic region. *Relatorios Científicos e Técnicos IPIMAR Serie Digital* 33: 59.

Motos L, Uriarte A, Valencia V. 1996. The spawning environment of the Bay of Biscay anchovy (*Engraulis encrasicolus* L.). *Scientia Marina* 60: 117-140. <https://doi.org/10.1111/jfb.15984>

Natanson LJ, Mello JJ, Campana SE. 2002. Validated age and growth of the porbeagle shark (*Lamna nasus*) in the western North Atlantic Ocean. *Fishery Bulletin* 100: 266-278. <https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/2002/1002/natans.pdf>

Semba Y, Yokawa K, Matsunaga H, Shono H. 2013. Distribution and trend in abundance of the porbeagle (*Lamna nasus*) in the southern hemisphere. *Marine and Freshwater Research* 64: 518-529. <https://doi.org/10.1071/MF12272>

Skomal GB, Natanson LJ. 2003. Age and growth of the blue shark (*Prionace glauca*) in the North Atlantic Ocean. *Fishery Bulletin* 101: 627-639.

van den Beld IMJ, Bourillet J-F, Arnaud-Haond S, de Chambure L, Davies JS, Guillaumont B, Olu K, Menot L. 2017. Cold-water coral habitats in submarine canyons of the Bay of Biscay. *Frontiers in Marine Science* 4: 118. <https://doi.org/10.3389/fmars.2017.00118>

Verballenás. 2019. Esto es una vergüenza. Available at: <https://www.facebook.com/verballenás/posts/esto-es-una-verg%C3%BCenza-no-es-un-puerto-chino-no-esto-es-bermeo-un-puerto-vizca%C3%ADno/2407975702549353/> Accessed May 2025.